Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface.

نویسندگان

  • Alina A Constantinescu
  • Hans Vink
  • Jos A E Spaan
چکیده

OBJECTIVE A thick endothelial glycocalyx provides the endothelial surface with a nonadherent shield. Oxidized LDL (Ox-LDL) degrades the endothelial glycocalyx. We hypothesized that glycocalyx degradation stimulates leukocyte-endothelial cell adhesion, whereas intravascular supplementation with sulfated polysaccharides reconstitutes the endothelial glycocalyx and attenuates Ox-LDL-induced leukocyte-endothelial cell adhesion. METHODS AND RESULTS Degradation of the endothelial glycocalyx by local microinjection of heparitinase (10 to 50 U/mL) into mouse cremaster venules dose-dependently increased the number of adherent leukocytes. Systemic administration of Ox-LDL (0.4 mg/100 g body weight) induced 10.1+/-0.9 adherent leukocytes/100 microm at 60 minutes. In the venules perfused with 500-kDa dextran sulfate (1 mg/mL), the number of adherent leukocytes at 60 minutes after Ox-LDL bolus application was not influenced (9.2+/-1.0 leukocytes/100 microm). However, the venules locally perfused with heparan sulfate (10 mg/mL) or heparin (1 mg/mL) displayed a significantly lower number of adherent leukocytes induced by Ox-LDL: 5.1+/-0.7 and 5.4+/-0.9 leukocytes/100 microm, respectively (P<0.05). Fluorescently labeled heparan sulfate and heparin, but not dextran sulfate, attached to the venule luminal surface after Ox-LDL administration. CONCLUSIONS Endothelial glycocalyx degradation stimulates leukocyte immobilization at the endothelial surface. Circulating heparan sulfate and heparin attach to the venule wall and attenuate Ox-LDL-induced leukocyte immobilization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying the mechanical properties of the endothelial glycocalyx with atomic force microscopy.

Our understanding of the interaction of leukocytes and the vessel wall during leukocyte capture is limited by an incomplete understanding of the mechanical properties of the endothelial surface layer. It is known that adhesion molecules on leukocytes are distributed non-uniformly relative to surface topography (3), that topography limits adhesive bond formation with other surfaces (9), and that...

متن کامل

Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress.

Flow-induced mechanotransduction in vascular endothelial cells has been studied over the years with a major focus on putative connections between disturbed flow and atherosclerosis. Recent studies have brought in a new perspective that the glycocalyx, a structure decorating the luminal surface of vascular endothelium, may play an important role in the mechanotransduction. This study reports tha...

متن کامل

Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx.

The endothelial glycocalyx is a dynamic extracellular matrix composed of cell surface proteoglycans, glycoproteins, and adsorbed serum proteins that has been implicated in the regulation and modulation of capillary tube hematocrit, permeability, and hemostasis. High tissue adenosine levels have been shown to adversely affect microvascular function and tissue survival after an ischemic episode, ...

متن کامل

Glycocalyx Degradation Induces a Proinflammatory Phenotype and Increased Leukocyte Adhesion in Cultured Endothelial Cells under Flow

Leukocyte adhesion to the endothelium is an early step in the pathogenesis of atherosclerosis. Effective adhesion requires the binding of leukocytes to their cognate receptors on the surface of endothelial cells. The glycocalyx covers the surface of endothelial cells and is important in the mechanotransduction of shear stress. This study aimed to identify the molecular mechanisms underlying the...

متن کامل

Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells

Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 23 9  شماره 

صفحات  -

تاریخ انتشار 2003